
simpleaf
Release 0.15.0

Dongze He, Rob Patro

Feb 01, 2024

CONTENTS:

1 What is simpleaf? 1

2 Important note 3
2.1 Installation . 3
2.2 set-paths command . 4
2.3 add-chemistry command . 4
2.4 inspect command . 5
2.5 index command . 5
2.6 quant command . 6
2.7 simpleaf workflow commands . 8
2.8 License . 27

3 Indices and tables 29

i

ii

CHAPTER

ONE

WHAT IS SIMPLEAF?

simpleaf is a program to simplify and customize the running and configuration of single-cell processing with alevin-
fry. This documentation covers the main commands of simpleaf, and how the program works. The tutorials we have
made for simpleaf are available at alevin-fry tutorial website.

1

https://github.com/COMBINE-lab/alevin-fry/
https://github.com/COMBINE-lab/alevin-fry/
https://combine-lab.github.io/alevin-fry-tutorials/

simpleaf, Release 0.15.0

2 Chapter 1. What is simpleaf?

CHAPTER

TWO

IMPORTANT NOTE

The simpleaf program runs tools uses in the alevin-fry pipeline. Specifically, to make use of the core functionality
of this tool, you will need to install piscem (and / or salmon) and alevin-fry. Further, in order to operate properly,
simpleaf requires that you set the environment variable ALEVIN_FRY_HOME. It will use the directory pointed to by
this variable to cache useful information (e.g. the paths to selected versions of the tools mentioned above, the mappings
for custom chemistries you tell it about, and other information like the permit lsits for certain chemistries). So, before
you run simpleaf, please make sure that you set the ALEVIN_FRY_HOME environment variable (you can also set it on
the command line when you run simpleaf, but setting it in your environment once is much simpler). In most shells,
this can be done with

$ export ALEVIN_FRY_HOME=/full/path/to/dir/you/want/to/use

That’s it for initial notes. Use the menu below to learn more about the simpleaf commands.

2.1 Installation

Simpleaf can be installed from source, from crates.io, or installed via bioconda. simpleaf alevin-fry, and either
piscem or salmon (or both if you prefer), as well as wget.

2.1.1 Recommended: installing from conda

We recommend all x86 (Linux or Mac) users to install simpleaf from bioconda, because all its dependencies are also
available on conda, and will be automatically installed (except piscem) when installing simpleaf.

conda install simpleaf piscem -c bioconda -c conda-forge

For Apple-silicon computers, for example those with an Apple M-series chip, simpleaf should be installed under the
x86 emulation layer, in other words, in shell with Rosetta2 enabled. See this for details. Furthermore, if one would like
to use piscem on apple silicon, one has to either download the pre-built piscem executable or build piscem from source
in the native shell (with Rosetta2 disabled) using the commands described here. Then, piscem can be executed from
both Rosetta2 enabled and disabled shell.

3

https://github.com/COMBINE-lab/piscem/
https://github.com/COMBINE-lab/salmon/
https://github.com/COMBINE-lab/alevin-fry/
https://crates.io/crates/simpleaf
https://bioconda.github.io/recipes/simpleaf/README.html
https://github.com/COMBINE-lab/alevin-fry
https://github.com/COMBINE-lab/piscem
https://github.com/COMBINE-lab/salmon
https://combine-lab.github.io/alevin-fry-tutorials/2023/simpleaf-piscem/#:~:text=Attention%20Apple%20silicon%20computer%20users%3A
https://github.com/COMBINE-lab/piscem/releases
https://github.com/COMBINE-lab/piscem#building

simpleaf, Release 0.15.0

2.1.2 Installing with cargo

cargo is the rust package manager. simpleaf is available on crate.io and can be installed from cargo.

cargo install simpleaf

Once installed, one will need to set the path to the executable of dependencies using the simpleaf set-paths pro-
gram as discussed in section Set Up Simpleaf manually.

2.1.3 Building from source (from GitHub)

You can also choose to build simpleaf from source by pulling its GitHub repo and build it as a normal rust program.
Then, one needs to set up simpleaf manually.

git clone https://github.com/COMBINE-lab/simpleaf.git && cd simpleaf
cargo build --release

2.2 set-paths command

The set-paths command is used to set the paths to the relevant executables and store them in a configuration file in
the ALEVIN_FRY_HOME directory. If you don’t provide an explicit path for a program, simpleaf will look in your PATH
for a compatible version. Once paths are set with this command, they are cached in a file in the ALEVIN_FRY_HOME
directory, and used to execute other commands in simpleaf. If you wish to update the paths, you can run this command
again, and it will overwrite this cache. This command takes the following optional arguments:

set paths to the programs that simpleaf will use

Usage: simpleaf set-paths [OPTIONS]

Options:
-s, --salmon <SALMON> path to salmon to use
-p, --piscem <PISCEM> path to piscem to use
-a, --alevin-fry <ALEVIN_FRY> path to alein-fry to use
-h, --help Print help information
-V, --version Print version information

2.3 add-chemistry command

The add-chemistry command simply allows adding a new custom chemistry to simpleaf’s registry of recog-
nized chemistries. The sub-command takes a --name (a string you wish to use to designate this chemistry), and a
--geometry (a custom geometry string to which you want to map this chemistry). The usage is as below. Note,
if you attempt to add a chemistry for a name that already exists in the custom chemistry registry, the new geometry
will overwrite the existing one. For more details on the syntax used to describe custom geometries, see the relevant
documentation on the custom chemistry specification.

USAGE:
simpleaf add-chemistry --name <NAME> --geometry <GEOMETRY>

OPTIONS:
(continues on next page)

4 Chapter 2. Important note

https://crates.io/crates/simpleaf
https://combine-lab.github.io/alevin-fry-tutorials/2023/simpleaf-piscem/#:~:text=4.%20Set%20Up%20Simpleaf%20Manually
https://combine-lab.github.io/alevin-fry-tutorials/2023/simpleaf-piscem/#:~:text=4.%20Set%20Up%20Simpleaf%20Manually
https://simpleaf.readthedocs.io/en/latest/quant-command.html#a-note-on-the-chemistry-flag

simpleaf, Release 0.15.0

(continued from previous page)

-g, --geometry <GEOMETRY> the geometry to which the chemistry maps
-h, --help Print help information
-n, --name <NAME> the name to give the chemistry

2.4 inspect command

The inspect command simply inspects the ALEVIN_FRY_HOME directory, and prints to the console the relevant in-
formation contained therein. Specifically, it will print the paths currently being used for the piscem, salmon, and
alevin-fry programs, as well as the versions of these tools. Further, if a custom_chemistries.json file is present,
it will print the contents of this file. This command can be invoked as:

$ simpleaf inspect

Currently, this command takes no arguments or options.

2.5 index command

The index command has two forms of input; either it will take a reference genome FASTA and GTF as input, from
which it can build a spliced+intronic (splici) reference or a spliced+unspliced (spliceu) reference using roers (which is
used as a library directly from simpleaf, and so need not be installed independently), or it will take a single reference
sequence file (i.e. FASTA file) as input (direct-ref mode).

In expanded reference mode, after the expanded reference is constructed, the resulting reference will be indexed with
piscem build or salmon index command (depending on the mapper you choose to use), and a copy of the 3-column
transcript-to-gene file will be placed in the index directory for subsequent use. The output directory will contain both a
ref and index subdirectoy, with the first containing the splici reference that was extracted from the provided genome
and GTF, and the latter containing the index built on this reference.

In direct-ref mode, the provided fasta file (passed in with --refseq) will be provided to piscem build or salmon
index directly. The output diretory will contain an index subdirectory that contains the index built on this reference.

The relevant options (which you can obtain by running simpleaf index -h) are:

build the (expanded) reference index

Usage: simpleaf index [OPTIONS] --output <OUTPUT> <--fasta <FASTA>|--ref-seq <REF_SEQ>>

Options:
-o, --output <OUTPUT> path to output directory (will be created if it doesn

→˓'t exist)
-t, --threads <THREADS> number of threads to use when running [default: 16]
-k, --kmer-length <KMER_LENGTH> the value of k to be used to construct the index␣

→˓[default: 31]
--keep-duplicates keep duplicated identical sequences when constructing␣

→˓the index
-p, --sparse if this flag is passed, build the sparse rather than␣

→˓dense index for mapping
-h, --help Print help information
-V, --version Print version information

(continues on next page)

2.4. inspect command 5

https://github.com/COMBINE-lab/roers

simpleaf, Release 0.15.0

(continued from previous page)

Expanded Reference Options:
--ref-type <REF_TYPE> specify whether an expanded reference, spliced+intronic␣

→˓(or splici) or spliced+unspliced (or spliceu), should be built [default:␣
→˓spliced+intronic]
-f, --fasta <FASTA> reference genome to be used for the expanded reference␣

→˓construction
-g, --gtf <GTF> reference GTF file to be used for the expanded reference␣

→˓construction
-r, --rlen <RLEN> the target read length the splici index will be built for

--dedup deduplicate identical sequences in roers when building an␣
→˓expanded reference reference

--spliced <SPLICED> path to FASTA file with extra spliced sequence to add to␣
→˓the index

--unspliced <UNSPLICED> path to FASTA file with extra unspliced sequence to add␣
→˓to the index

Direct Reference Options:
--ref-seq <REF_SEQ> target sequences (provide target sequences directly; avoid␣

→˓expanded reference construction)

Piscem Index Options:
--use-piscem use piscem instead of salmon for indexing␣

→˓and mapping
-m, --minimizer-length <MINIMIZER_LENGTH> the value of m to be used to construct the␣

→˓piscem index (must be < k) [default: 19]

2.6 quant command

The quant command takes as input either:

1) the index, reads, and relevant information about the experiment (e.g. the chemistry) OR

2) the directory containing the result of a previous mapping run, and relevant information about the experiemnt
(e.g. the chemistry)

and runs all relevant the steps of the alevin-fry pipeline. When processing a new dataset from scratch, the first option
is the one you are likely interested in (you will provide the --index, --reads1 and --reads2 arguments). If multiple
read files are provided to the --reads1 and --reads2 arguments, those files must be comma (,) separated.

On the other hand, if you have already performed quantification or have, for some other reason, already mapped the
reads to produce a RAD file, you can start the process from the mapped read directory directly using the --map-dir
argument instead. This latter approach makes it easy to test out different quantification approaches (e.g. different
filtering options or UMI resolution strategies).

Note: If you use the unfiltered-permit-list -u mode for permit-list generation, and you are using either 10xv2 or 10xv3
chemistry, you can provide the flag by itself, and simpleaf will automatically fetch and apply the appropriate unifltered
permit list. However, if you are using -u with any other chemistry, you must explicitly provide a path to the unfiltered
permit list to be used. The -d/--expected-ori flag allows controlling the like-named option that is passed to the
generate-permit-list command of alevin-fry. This is an “optional” option. If it is not provided explicitly, it
is set to “both” (allowing reads aligning in both orientations to pass through), unless the chemistry is set as 10xv2 or
10xv3, in which case it is set as “fw”. Regardless of the chemistry, if the user sets this option explicitly, this choice is
respected.

6 Chapter 2. Important note

simpleaf, Release 0.15.0

2.6.1 A note on the --chemistry flag

Note: The geometry specification language has changed in simpleaf v0.9.0 and above. This change is to unify the
geometry description language between simpleaf and the tools in the backend that actually perform the fragment
mapping. Further, the new laguage is more general, capable and exensible, so it will be easier to add more features in
the future in a backward compatible manner. However, this means that if you have a custom_chemistries.json file
from before simpleaf v0.9.0, you will have to re-create that file with the new chemistries by overwriting them with
the custom geometry descriptions in the new format.

The --chemistry option can take either a string describing the specific chemisty, or a string describing the geometry
of the barcode, umi and mappable read. For example, the string 10xv2 and 10xv3 will apply the appropriate settings
for the 10x chromium v2 and v3 protocols respectively. However, general geometries can be provided as well, in case
the chemistry you are trying to use has not been added as a pre-registered option. For example, the instead of providing
the --chemistry flag with the string 10xv2, you could instead provide it with the string "1{b[16]u[10]x:}2{r:}",
or, instead of providing 10xv3 you could provide "1{b[16]u[12]x:}2{r:}".

The custom format is as follows; you must specify the content of read 1 and read 2 in terms of the barcode, UMI, and
mappable read sequence. A specification looks like this:

1{b[16]u[12]x:}2{r:}

In particular, this is how one would specify the 10x Chromium v3 geometry using the custom syntax. The format string
says that the read pair should be interpreted as read 1 1{...} followed by read 2 2{...}. The syntax inside the {}
says how the read should be interpreted. Here b[16]u[12]x: means that the first 16 bases constitute the barcode, the
next 12 constitute the UMI, and anything that comes after that (if it exists) until the end of read 1 should be discarded
(x). For read 2, we have 2{r:}, meaning that we should interpret read 2, in it’s full length, as biological sequence.

It is possible to have pieces of geometry repeated, in which case they will be extracted and concatenated together. For
example, 1{b[16]u[12]b[4]x:} would mean that we should obtain the barcode by extracting bases 1-16 (1-based
indexing) and 29-32 and concatenating them togehter to obtain the full barcode. A

Note: If you use a custom geometry frequently, you can add it to a json file custom_chemistries.json in the
ALEVIN_FRY_HOME directory. This file simply acts as a key-value store mapping each custom geometry to the name
you wish to use for it. For example, putting the contents below into this file would allow you to pass --chemistry
flarb to the simpleaf quant command, and it would interpret the reads as having the specified geometry (in this
case, the same as the 10xv3 geometry). Multiple custom chemistries can be added by simply adding more entries to
this json file.

{
"flarb" : "1{b[16]u[12]x:}2{r:}"

}

The relevant options (which you can obtain by running simpleaf quant -h) are below:

quantify a sample

Usage: simpleaf quant [OPTIONS] --chemistry <CHEMISTRY> --output <OUTPUT> --resolution
→˓<RESOLUTION> <--knee|--unfiltered-pl [<UNFILTERED_PL>]|--forced-cells <FORCED_CELLS>|--
→˓expect-cells <EXPECT_CELLS>> <--index <INDEX>|--map-dir <MAP_DIR>>

Options:
-c, --chemistry <CHEMISTRY> chemistry

(continues on next page)

2.6. quant command 7

simpleaf, Release 0.15.0

(continued from previous page)

-o, --output <OUTPUT> output directory
-t, --threads <THREADS> number of threads to use when running [default: 16]
-h, --help Print help information
-V, --version Print version information

Mapping Options:
-i, --index <INDEX> path to index
-1, --reads1 <READS1> comma-separated list of paths to read 1 files
-2, --reads2 <READS2> comma-separated list of paths to read 2 files
-s, --use-selective-alignment use selective-alignment for mapping (instead of␣

→˓pseudoalignment with structural constraints)
--use-piscem use piscem for mapping (requires that index points to␣

→˓the piscem index)
--map-dir <MAP_DIR> path to a mapped output directory containing a RAD file␣

→˓to skip mapping

Permit List Generation Options:
-k, --knee use knee filtering mode
-u, --unfiltered-pl [<UNFILTERED_PL>] use unfiltered permit list
-f, --forced-cells <FORCED_CELLS> use forced number of cells
-x, --explicit-pl <EXPLICIT_PL> use a filtered, explicit permit list
-e, --expect-cells <EXPECT_CELLS> use expected number of cells
-d, --expected-ori <EXPECTED_ORI> The expected direction/orientation of␣

→˓alignments in the chemistry being processed. If not provided, will default to `fw` for␣
→˓10xv2/10xv3, otherwise `both` [possible

values: fw, rc, both]
--min-reads <MIN_READS> minimum read count threshold for a cell to be␣

→˓retained/processed; only used with --unfiltered-pl [default: 10]

UMI Resolution Options:
-m, --t2g-map <T2G_MAP> transcript to gene map
-r, --resolution <RESOLUTION> resolution mode [possible values: cr-like, cr-like-em,␣

→˓parsimony, parsimony-em, parsimony-gene, parsimony-gene-em]

2.7 simpleaf workflow commands

The simpleaf workflow program exposes a number of different commands that are responsible for exposing different
capabilities. The list of current and valid commands are documented below.

Besides, we also provides a simpleaf workflow utility library for developers, which contains useful functions for work-
flow template development. The simpleaf team has been continously improving existing functions and adding new
funtion into this library. The codebase is included in protocol esturary.

8 Chapter 2. Important note

https://github.com/COMBINE-lab/protocol-estuary/blob/main/utils/simpleaf_workflow_utils.libsonnet

simpleaf, Release 0.15.0

2.7.1 simpleaf workflow get

The simpleaf workflow get command helps fetch the files of a registered simpleaf workflow to a local directory.
One can run the simpleaf workflow list command to obtain a list of all available workflows. Please check our tutorial
on running an workflow from an published template and developing custom template from scratch

It searches the workflow registry according to the string passed to the --name (or -n) flag, pack all related files into a
folder named by the workflow name plus a _template and dump the folder in the directory passed to the --output
(or -o) flag. If invoking local workflows, one can skip this step and provide the workflow template directly to simpleaf
workflow run. For a registered workflow, one should get the workflow template from simpleaf workflow get, fill
in the required information, and provide the filled template to simpleaf workflow run via the --template flag.

If the given name is not a valid workflow name, an error will be returned. At the same time, simpleaf will search for
workflows with a similar name and list those names in the error message.

In the template folder dumpped by simpleaf workflow get, the workflow template is named by the workflow name
and ends with .jsonnet. There might be other library files or log files in the folder, depending on the specific workflow.
For example, to pull the workflow for analyzing CITE-seq data, we can do

simpleaf workflow get --name cite-seq-ADT+HTO_10xv2 -o output_dir

The the workflow template will be exported to output_dir/cite-seq-ADT+HTO_10xv2_template/
cite-seq-ADT+HTO_10xv2.jsonnet.

Providing information in workflow configuration file

Usually, a published workflow contains four sections:

1) fast_config: For most users, this section is the only section needed to be completed, i.e., replacing all null
in the section by a meaningful value. The Jsonnet program should be smart enough to generate a valid workflow
description JSON from the information provided here.

2) advanced_config: This section contains advanced options that are not covered in the fast_config section.
The behavior of the workflow can be finely tuned by providing information in this section.

3) external_commands: This section contains all external shell command records. If you see TBD in this section,
it means that these fields will be filled by the Jsonnet program automatically.

4) meta_info: This section contains the meta info of this workflow. Sometimes the information provided here is
used for controling global arguments, for example the output directory and the number of threads used for each
invoked command.

For most users, the fast_config is the only section needed to instantiate the template. To fill the missing information,
one just needs to replace the null with a meaningful value. For more details, please check out dedicated tutorial on
running workflows from an published template.

Full Usage

The relevant options (which you can obtain by running simpleaf workflow get -h) are:

Get the workflow template and related files of a registered workflow

Usage: simpleaf workflow get --name <NAME> --output <OUTPUT>

Options:
-o, --output <OUTPUT> path to dump the folder containing the workflow related files

(continues on next page)

2.7. simpleaf workflow commands 9

https://combine-lab.github.io/alevin-fry-tutorials/2023/running-simpleaf-workflow/
https://combine-lab.github.io/alevin-fry-tutorials/2023/build-simpleaf-workflow/
https://combine-lab.github.io/alevin-fry-tutorials/2023/running-simpleaf-workflow/

simpleaf, Release 0.15.0

(continued from previous page)

-n, --name <NAME> name of the queried workflow
-h, --help Print help
-V, --version Print version

2.7.2 simpleaf workflow run

The simpleaf workflow run command is designed to run potentially complex single-cell data processing workflows
using an instantiated simpleaf workflow template. Please check our tutorial on running an workflow from an published
template and developing custom template from scratch

simpleaf workflow run exposes one required parameter group (though the options are mutually exclusive):

• --template takes the path to a simpleaf workflow template (i.e. an un-evaluated JSONNET file). One can
develop their own templates or grab published templates from the protocol estuary GitHub repository using the
API we provide via the the simpleaf workflow get command, and fill in required information.

• --manifest takes the path to a simpleaf workflow manifest (i.e. a fully-instantiated JSON file that describes
and enumrates all of the commands to be executed, with all relevant parameters fully specified). This manifest
could e.g. be the result of a prior execution, or the result of applying the simpleaf workflow patch command
to a template to produce one or more manifests with desired parameters replaced.

Additionally, the user may pass an --output parameter to the run invokation, but only if a template is being instan-
tiated and run, as the --output flag does not make sense in the context of a fully-instantiated manifest.

• --output takes the path to the output directory for writing the log files and the results generated by invoking
workflow commands. Note that paramater will only have an effect if the corresponding template allows passing
output as an external variable (all of the templates in the protocol estuary do). Further, if the output directory
has already been manually overridden in the template, then --output will have no effect and will not be used;
in this case a warning to this effect will be printed.

When calling simpleaf workflow run using a workflow template, simpleaf will first instantiate the template,
which is a Jsonnet program, into a workflow manifest in JSON format. Whereas the workflow template provides a
“template” for the workflow and functions to handle features like basic logic, the resulting workflow manifest is a simple
imperative description of the commands to be executed. To provide the greatest flexibility, the only requirement we set
for a simpleafworkflow template is that in the workflow manifest its results, the fields representing a command record,
either a simpleaf command or an external shell command, follow the format described in section Valid simpleaf
workflow manifest format.

Then, simpleaf workflow run will traverse the workflow manifest to collect the simpleaf and external shell com-
mand records and place them into an execution queue, ordered by their step number.

simpleaf workflow run also exposes multiple flags for controlling the execution flow when invoking the commands.
If none of the flags is set, simpleaf will invoke all commands in the execution queue.

• If setting the --no-execution flag, simpleaf will parse the file passed to the --template option, write the
manifest and log files, and return without invoking any command.

• If setting the --start-at flag with a step number, simpleaf will ignore all previous steps (commands) and
begin the invocation from the commands in the execution queue whose step is equal or next to that specific
starting step.

• If setting the --resume flag, simpleaf will try to find the log file from a previous run in the provided output
folder to decide which step to begin with.

• If setting the --skip-step flag with a set of comma-separated step numbers, simpleaf will ignore the com-
mands whose step is in those numbers.

10 Chapter 2. Important note

https://combine-lab.github.io/alevin-fry-tutorials/2023/running-simpleaf-workflow/
https://combine-lab.github.io/alevin-fry-tutorials/2023/running-simpleaf-workflow/
https://combine-lab.github.io/alevin-fry-tutorials/2023/build-simpleaf-workflow/
hhttps://github.com/COMBINE-lab/protocol-estuary
https://jsonnet.org/

simpleaf, Release 0.15.0

Workflow Output

simpleaf workflow run writes two log files to the output directory passed to --output:

• simpleaf_workflow_log.json: This file records the meta and logging information of the workflow execu-
tion. For example, the runtime of each executed command and the step of the start and terminating com-
mand. If --resume is set, simpleaf will try to find this file in the provided output directory to decide which
step(command) to start.

• workflow_execution_log.json: This file is a modified version of the workflow manifest JSON discussed
above. The only modification is that in this file, the active field of the successfully invoked commands (return
code 0) becomes false.

workflow run: Full Usage

The relevant options (which you can obtain by running simpleaf workflow run -h) are:

Parse and instantiate a workflow template and invoke the workflow commands, or run an␣
→˓instantiated manifest directly

Usage: simpleaf workflow run [OPTIONS] <--manifest <MANIFEST>|--template <TEMPLATE>>

Options:
-t, --template <TEMPLATE> path to an instantiated simpleaf workflow template
-o, --output <OUTPUT> output directory for log files and the workflow outputs␣

→˓that have no explicit output directory
-m, --manifest <MANIFEST> path to an instantiated simpleaf workflow template
-h, --help Print help
-V, --version Print version

Control Flow:
-n, --no-execution return after instantiating the template (JSONNET file)␣

→˓into a manifest (JSON foramt) without actually executing the resulting manifest
-s, --start-at <START_AT> Start the execution from a specific Step. All previous␣

→˓steps will be ignored [default: 1]
-r, --resume resume execution from the termination step of a previous␣

→˓run. To use this flag, the output directory must contains the JSON file generated from␣
→˓a previous run

--skip-step <SKIP_STEP> comma separated integers indicating which steps␣
→˓(commands) will be skipped during the execution

Jsonnet:
-j, --jpaths <JPATHS> comma separated library search paths passing to internal␣

→˓Jsonnet engine as --jpath flags

2.7. simpleaf workflow commands 11

simpleaf, Release 0.15.0

The procedure of parsing a simpleaf workflow template

In simpleaf workflow, we use the Jrsonnet library, a rust implementation of Jsonnet, to parse and instantiate the
workflow template. Any valid Jsonnet program and JSON file is a valid simpleaf workflow template, as long as it can
produce a valid workflow manifest. When calling Jrsonnet, simpleaf workflow automatically passes the following
built-in arguments in addition to the provided template.

1) The output directory passed to --output as the external variable output.

2) The workflow utility library from the protocol estuary as the external variable utils.

3) The path to the utils folder in the protocol estuary in ALEVIN_FRY_HOME as an additional library search direc-
tory.

4) The paths passed to the --lib-path flag, if any, as additional library search directories.

This also means that any custom configuration program can access the __output and __utils variables in the Jsonnet
program using std.extVar("__output") and std.extVar("__utils"). Note that the path to the parent directory
of the file passed to --template is an additional library search directory in Jrsonnet by default.

Valid simpleaf workflow manifest format

Although any Jsonnet program or JSON file is a valid input for simpleaf workflow, it doesn’t mean that all such
files can be converted to a valid simpleaf workflow manifest. To provide the greatest flexibility, we set only the below
requirements for the fields representing a command record — either a simpleaf command or an external command,
in the simpleaf workflow manifest JSON file (not necessarily the template).

• To ease the parsing process, all fields that represent arguments in an external command argument list be provided
as strings, i.e., wrapped by quotes ("value"), even for integers like the number of threads (for example, [...,
"-t", "16", ...] for some external command that takes a number of threads via the -t parameter).

• A command record field must contain a step and a program_name sub-field, where the step field
represents which step, using an unassigned integer, this command constitutes in the workflow. The
program_name field represents a valid program in the user’s execution environment as a string.

– For a simpleaf command, the correct program_name is the name of the simpleaf command as a
string. For example, for simpleaf index, it is "simpleaf index" and for simpleaf quant, it
is "simpleaf quant".

– For an external command such as awk, if the binary is invokable given the user’s PATH environment
variable, it can just be "awk"; if not, it must contain a valid full path to the binary, for example, "/
usr/bin/awk".

• A command record can also have a “active” boolean field, representing if this command is active. Simpleaf
will ignore (neither parse nor invoke) all commands that are inactive ({“active”: false}). For command records
missing this field, simpleaf will regard them as active commands.

• If a field records a simpleaf command, the name of its sub-fields, except step and program_name, must
be valid simpleaf flags (for example, options like --fasta, or -f for short, for simpleaf index and
--unfiltered-pl (or -u) for simpleaf quant). Those option names (sub-field names), together with their
values, if any, will be used to call the corresponding simpleaf program. Sub-fields not named by a valid simpleaf
flag will trigger an error.

• If a field records an external command, it must contain valid step and program_name sub-fields as described
above. In contrast to simpleaf command records, all arguments of an external shell command must be provided
in an array, in order, with the name "arguments". simpleaf workflow will parse the entries in the array to
build the actual command in order. For example, to tell simpleaf workflow to invoke the command ls -l
-h . at step 7, one needs to use the following JSON record:

12 Chapter 2. Important note

https://github.com/CertainLach/jrsonnet
https://jsonnet.org/

simpleaf, Release 0.15.0

{
"step": 7,
"program_name": "ls",
"active": true,
"arguments": ["-l", "-h", "."]

}

2.7.3 simpleaf workflow list

simpleaf workflow list lists all workflows in the registry. If one would like to refresh the registry to keep all
workflows up to date, please run the simpleaf workflow refresh command.

Full Usage

The relevant options (which you can obtain by running simpleaf workflow list -h) are:

Print a summary of the currently available workflows

Usage: simpleaf workflow list

Options:
-h, --help Print help
-V, --version Print version

2.7.4 simpleaf workflow patch

The simpleaf workflow patch command allow “patching” simpleaf workflows. Specifically, it allows one to
patch either a workflow template prior to instantiation (and therefore, to patch the values of variables in the workflow
that may affect large parts of the configuration) or a workflow manifest (where patching only directly affects the specific
fields being replaced). Here, the act of patching refers to the replacement of one or more fields in the template or
manifest with alternative values drawn from a parameter table (e.g. a “sample sheet”).

The patch command is useful when you wish to use the “skeleton” of a workflow (e.g. a template with many of the
variables set), but you wish to parameterize other fields over some set of different options.

Concretely, for example, you may have many gene 10x chromium v3 samples, all of which you wish to process with
the same workflow, but providing different reads as input and different output locations for the workflow output. The
patch command makes this easy to accomplish.

When operating on a template, the patch command takes as input a workflow template (which can be uninstantiated
or partially filled in) via the --template parameter, as well as a parameter table as a ; separated CSV file via the
--patch parameter (see details on the format below). For each (non-header) row in the CSV file, it will patch the
template with parameters provided in this row, instantiate a new manifest from this template (after replacement), and
write the instantiated manifest out to a JSON file.

When operating on a manifest, the patch command takes as input a manifest files via the --manifest parameter, as
well as a parameter table as a ; separated CSV file via the --patch parameter. For each (non-header) row in the CSV
file, it will patch the manifest with parameters provided in this row and write the resulting patched manifest out to a
JSON file. Note that, in this case, since the input being patched is a fully-instantiated manifest, the patch simply replaces
the values of the designated fields, but it will not affect the values of any fields that are not diretly patched.

Finally, the workflow patch command accepts an optional argument --output, which specifies the path to a di-
rectory (which will be recursively created if it doesn’t exist) where the patched manifests will be written. If this

2.7. simpleaf workflow commands 13

simpleaf, Release 0.15.0

argument is not provided, then the patched manifests will be written to the same directory as the template or man-
ifest to which the patching process is being applied. The name of each patched manifest is determined by the
name of the template or manifest being patched, and the corresponding value in the name column of the patch file.
For example if you are patching a template named awesome_gene_expression.jsonnet, and you have a param-
eter table with two (non-header) rows with the values in the name column being sample1 and sample2 respec-
tively, then the patching process will result in two manifests named awesome_gene_expression_sample1.json
and awesome_gene_expression_sample2.json. If no --output was provided to the command, then these will be
written in the same directory where awesome_gene_expression.jsonnet resides, otherwise they will be written in
the directory specified by the --output option.

Patch file

The patch file should be a ;-separated CSV-like file. The header column will contain one entry for each field of the
template or manifest that is to be replaced, as well as an additional special column called name, that gives a name to the
parameter tuple encoded in each row. To refer to a field in the template or manifest, one should use the JSON pointer
syntax described in RFC6901. Additionally, since the values being replaced can be of distinct valid JSON types, this
type information must also be encoded in the column header.

For example, imagine that your template has two fields defined as below:

{
"workflow" : {
/* possibly other content */
"simpelaf_quant" : {
/* possibly other content */
"--reads1" : "reads0_1.fq.gz",
/* possibly other content */
"ready" : false,

}
/* possibly other content */

}
}

that you wish to replace. You wish to replace “–reads1” with “reads1_sample2_1.fq.gz” and “ready” with true (the
boolean value true, not the string). Then the definition of the corresponding column headers would be /workflow/
simpleaf_quant/--reads1 and /workflow/simpleaf_quant/ready, respectively. The before the sec-
ond column header designates that this column will hold boolean parameters. You could also prefix the first column
header with <s> (for the string type), but this is the default and can be omitted. Finally, then, the full patch file might
look something like:

name;/workflow/simpleaf_quant/--reads1;/workflow/simpleaf_quant/ready
sample1;"reads1_sample2_1.fq.gz";true

The valid type tags are:

<s>
prefixes a header that is a pointer to a string-valued field. This is also the default so if a header has no prefix,
then <s> is implicitly assumed

prefixes a header that is a pointer to a boolean-valued field.

<a>
prefixes a header that is a pointer to an array-valued field.

14 Chapter 2. Important note

https://datatracker.ietf.org/doc/html/rfc6901

simpleaf, Release 0.15.0

Note: Currently, patching does not support parameter entries that are themselves full object types. Finally, if any entry
contains the string “null”, it will automatically be converted into the JSON null constant (which means that currently,
at least, there is a restriction that the string “null” can not be patched into a template or manifest).

workflow patch: Full Usage

The relevant options (which you can obtain by running simpleaf workflow patch -h) are:

Patch a workflow template or instantiated manifest with a subset of parameters to␣
→˓produce a series of workflow manifests

Usage: simpleaf workflow patch [OPTIONS] --patch <PATCH> <--manifest <MANIFEST>|--
→˓template <TEMPLATE>>

Options:
-m, --manifest <MANIFEST> fully-instantiated manifest (JSON file) to patch. If this␣

→˓argument is given, the patch is applied directly
to the JSON file in a manner akin to simple key-value␣

→˓replacement. Since the manifest is fully-instantiated,
no derived values will be affected

-t, --template <TEMPLATE> partially-instantiated template (JSONNET file) to patch. If␣
→˓this argument is given, the patch is applied

before the template is instantiated (i.e. if you override␣
→˓a variable used elswhere in the template, all

derived values will be affected)
-p, --patch <PATCH> patch to apply as a ';' separated parameter table with␣

→˓headers declared as specified in the documentation
-o, --output <OUTPUT> output directory where the patched manifest files (i.e. the␣

→˓output of applying the patching procedure)
should be stored. If no directory is provided, the patched␣

→˓manifests are stored in the same location as the
input template or manifest to which patching is applied

-h, --help Print help
-V, --version Print version

2.7.5 simpleaf workflow refresh

simpleaf workflow refresh pulls the latest protocol estuary library from its GitHub repository. We recommend
updating the registry everytime before fetching a workflow.

Full Usage

The relevant options (which you can obtain by running simpleaf workflow refresh -h) are:

Update the local copy of protocol esturary to the latest version

Usage: simpleaf workflow refresh

Options:
-h, --help Print help
-V, --version Print version

2.7. simpleaf workflow commands 15

https://github.com/COMBINE-lab/protocol-estuary

simpleaf, Release 0.15.0

2.7.6 Simpleaf workflow utility library

To ease the development of simpleaf workflow templates, the simpleaf team provides not only some built-in vari-
ables, but also a workflow utility library, which will be automatically passed to the internal Jsonnet engine of sim-
pleaf when parsing a workflow template as the __utils external variable. One can receive this variable in their
templates by adding utils=std.extVar("__utils"), and use the functions in the utility library by calling utils.
function_name(args), where function_name should be replaced by an actual function name listed below. To be
consistent with the Jsonnet official documentation, here we will list the function signatures with a brief description.
One can find the function definitions on this page.

Import the utility library

As the built-in variables are provided by simpleaf to its internal Jsonnet engine, they will be unavailable if we want
to parse the template directly using Jsonnet or Jrsonnet. Therefore, when debugging templates that utilize the utility
library with an external Jsonnet engine, we must manually provide the __utils external variable to Jsonnet and either
copy and paste the library file to the same directory as the template file, which is the default library searching path
when calling jsonnet, or provide the directory containing the library as an additional library searching path. Although
in the following code chunk, we show the code for both ways, we only need to select one in practice. Here we assume
that simpleaf has been configured correctly, i.e., the ALEVIN_FRY_HOME environment variable has been set and a local
copy of the protocol-estuary exists. If not, one can directly obtain the library file from its GitHub repository.

If we haven't set up simpleaf, we pull the file directly from github
wget https://github.com/COMBINE-lab/protocol-estuary/blob/main/utils/simpleaf_workflow_
→˓utils.libsonnet

Otherwise, we either copy the library file to the same dir as the template
copy $ALEVIN_FRY_HOME/protocol-estuary/protocol-estuary-main/utils/simpleaf_workflow_
→˓utils.libsonnet .

or provide the directory as an additional library searching path via --jpath
jsonnet a_template_using_utils_lib.jsonnet --ext-code '__utils=import "simpleaf_workflow_
→˓utils.libsonnet"' --jpath "$ALEVIN_FRY_HOME/protocol-estuary/protocol-estuary-main/
→˓utils"

where --ext-code is the flag for passing an external variable, and --jpath specifies the library searching path.

Although simpleaf automatically provides the utility library as the external variable __utils, we must receive this
external variable in our template before starting using the functions provided in this library.

To do this, we recommend adding the following code at the beginning of your workflow template.

local utils=std.extVar("__utils");

utils.ref_type(o)

Input:

• o: an object with

– a type field and

– an object field with the name specified by the type field. Other fields will be ignored. For
example, {type: "spliceu", spliceu: {gtf: "genes.gtf", fasta: "genome.fa",
"field_being_ignored": "ignore me"}}.

16 Chapter 2. Important note

https://combine-lab.github.io/alevin-fry-tutorials/2023/build-simpleaf-workflow/#:~:text=4.%20Utilizing%20built%2Din%20variables%20and%20custom%20library%20search%20paths%20in%20custom%20templates
https://combine-lab.github.io/alevin-fry-tutorials/2023/build-simpleaf-workflow/#:~:text=4.%20Utilizing%20built%2Din%20variables%20and%20custom%20library%20search%20paths%20in%20custom%20templates
https://github.com/CertainLach/jsonnet
https://jsonnet.org/ref/stdlib.html
https://github.com/COMBINE-lab/protocol-estuary/blob/main/utils/simpleaf_workflow_utils.libsonnet

simpleaf, Release 0.15.0

Output:

• An object with the simpleaf index arguments that are related to the specified reference type in the input object.

This function has four modes (reference types), triggered by the type field in the input object. When specifying a
mode, the input object must contain an object field named by that mode and contain the required fields. Otherwise, an
error will be raised. The four modes are:

• spliceu (spliced+unspliced reference): The required fields are:

– gtf: A string representing the path to a gene annotation GTF file.

– fasta: A string representing the path to a reference genome FASTA file.

• splici (spliced+intronic reference): The required fields are:

– gtf: A string representing the path to a gene annotation GTF file.

– fasta: A string representing the path to a reference genome FASTA file.

– rlen: An optional field representing the read length in the dataset. If not provided, the default value,
91, will be used.

• direct_ref : The required fields are:

– ref_seq: A string representing the path to a transcriptome FASTA file.

– t2g_map: A string representing the path to a transcript-to-gene mapping file.

• existing_index: The required fields are:

– index: A string representing the path to an existing index directory.

– t2g_map: A string representing the path to a transcript-to-gene mapping file.

Wrapper functions: We also provide separate functions for each of the four modes, utils.splici, utils.spliceu,
utils.direct_ref, and utils.existing_index, which are thin wrappers of utils.ref_type. These four func-
tions take an object containing their required fields introduced above.

Example Usage

import the utility library
local utils=std.extVar("__utils");

local splici_args = {
gtf : "genes.gtf",
fasta : "genome.fa",
rlen : 91

};

local ref_type = utils.ref_type({
type : "splici",
splici : splici_args

});

local splici = utils.splici(splici_args);

In the above example, the objects ref_type and splici are identical and look like the following:

{
hidden, system fields
type :: "splici", # hidden field

(continues on next page)

2.7. simpleaf workflow commands 17

simpleaf, Release 0.15.0

(continued from previous page)

arguments :: {gtf : "genes.gtf", fasta : "genome.fa", rlen : 91}, # hidden field

fields shown in the manifest
"--ref-type" : "splici",
"--fasta" : "genome.fa",
"--gtf" : "genes.gtf",
"--rlen" : 91

}

utils.simpleaf_index(step, ref_type, arguments, output)

Input:

• step: An integer indicating the step number (execution order) of this simpleaf command record in the workflow.

• ref_type: A ref_type object returned by calling utils.ref_type or any object with the same format.

• arguments: An object in which each field represents a simpleaf index argument. Furthermore, there must be a
field called active representing the active state of this simpleaf index command.

• output: A string representing the output directory of the simpleaf index command.

Output:

• A well-defined simpleaf index command record.

Example Usage

import the utility library
local utils=std.extVar("__utils");

local splici_args = {
gtf : "genes.gtf",
fasta : "genome.fa",
rlen : 91

};

local splici = utils.splici(splici_args);

local arguments = {
active : true,
"--use-piscem" : true

};

local simpleaf_index = utils.simpleaf_index(
1, # step number
splici, # ref_type,
arguments,
"./simpleaf_index" # output directory

);

The simpleaf_index object in the above code chunk will be

{
hidden, system fields

(continues on next page)

18 Chapter 2. Important note

simpleaf, Release 0.15.0

(continued from previous page)

ref_type :: {}, # hidden field. The actual contents are omitted. see above example␣
→˓code for function `ref_type`

arguments :: {active : true, "--use-piscem" : true}, # hidden field
output :: "./simpleaf_index", # hidden field
index :: "./simpleaf_index/index", # hidden field
t2g_map :: "./simpleaf_index/index/t2g_3col.tsv", # hidden field

fields shown in in the manifest
program_name : "simpleaf index",
step : 1,
active : true,
"--output": "./workflow_output/simpleaf_index",
"--gtf" : "genes.gtf",
"--fasta" : "genome.fa",
"--rlen" : 91,
"--use-piscem" : true

}

utils.map_type(o, simpleaf_index = {})

Input:

• o: an object with

– a type field, and

– an object field with the name specified by the type field. Other fields will be ignored. For exam-
ple, {"type": "map_reads", "map_reads": {"reads1": null, "reads2": null},
"field_being_ignored": "ignore me"}.

• simpleaf_index: An empty object if in existing_mappings mode, or the output object of the simpleaf_index
function if in map_reads mode. The default value is an empty object.

Output:

• An object with the simpleaf quant arguments that are related to the specified map type in the input object.

This function has two modes (map types), triggered by the type field in the input object. When specifying a mode, the
input object must contain an object field named by that mode and contain the required fields. Otherwise, an error will
be raised. The two modes are:

• map_reads: Map reads against the provided index or an index built from a previous step. The required
fields are

– reads1: A string representing the path to a gene annotation GTF file,

– reads2: A string representing the path to a reference genome FASTA file.

• existing_mappings: Skip mapping and use the existing mapping results. The required fields are

– map_dir: A string representing the path to the mapping result directory,

– t2g_map: A string representing the path to a transcript-to-gene mapping file.

Wrapper functions: We also provide separate functions for each of the two modes, utils.map_reads and utils.
existing_mappings, which are thin wrappers of utils.map_type. These two functions take an object containing
their required fields introduced above.

Example Usage

2.7. simpleaf workflow commands 19

simpleaf, Release 0.15.0

import the utility library
local utils=std.extVar("__utils");

local simpleaf_index = {}; # The return of object of simpleaf_index function in its␣
→˓example usage

local map_reads_args = {
reads1 : "reads1.fastq",
reads2 : "reads2.fastq"

};

local map_type = utils.map_type({
type : "map_reads",
map_reads : map_reads_args

});

local map_reads = utils.map_reads(map_reads_args);

In the above example, the objects map_type and map_reads are identical and look like the following:

{
hidden, system fields
type :: "map_reads", # hidden field
arguments :: {reads1 : "reads1.fastq", reads2 : "reads2.fastq"}, # hidden field

fields shown in the manifest
"--index" : "./workflow_output/simpleaf_index/index",
"--t2g-map": "./workflow_output/simpleaf_index/index/t2g_3col.tsv",
"--reads1" : "reads1.fastq",
"--reads2" : "reads2.fastq"

}

utils.cell_filt_type(o)

Input:

• o: an object with

– a type field, and

– an argument field with the name specified by the type field. Other fields will be ig-
nored. For example, {"type": "explicit_pl", "explicit_pl": "whitelist.txt",
"field_being_ignored": "ignore me"}

Output:

• An object with the simpleaf quant arguments that are related to the specified cell filtering type in the input object.

This function has five modes (cell filtering types), triggered by the type field in the input object. When specifying a
mode, the input object must contain an object field named by that mode and contain the required fields. Otherwise, an
error will be raised. For more details, please refer to the online documentation of simpleaf quant and alevin-fry. The
five modes are:

• unfiltered_pl: No cell filtering but correcting cell barcodes by an external or default (only works for 10X
Chromium V2 and V3). The corresponding argument value field can be true (using the default whitelist if
in 10xv2 and 10xv3 chemistry), or a string representing the path to an unfiltered permit list file.

20 Chapter 2. Important note

https://simpleaf.readthedocs.io/en/latest/quant-command.html
https://alevin-fry.readthedocs.io/en/latest/

simpleaf, Release 0.15.0

• knee: Knee point-based filtering. The corresponding argument value field must be true if selected.

• forced: Use a forced number of cells. The corresponding argument field must be an integer representing the
number of cells that can pass the filtering.

• expect: Use the expected number of cells. The corresponding argument field must be an integer representing the
expected number of cells.

• explicit_pl: Use a filtered, explicit permit list. The corresponding argument field must be a string representing
the path to a cell barcode permit list file.

Wrapper functions: We also provide a separate function for each mode, utils.unfiltered_pl, utils.knee,
utils.forced, utils.expect, and utils.explicit_pl, which are thin wrappers of utils.cell_filt_type.
These functions take an object containing their required fields introduced above.

Example Usage

import the utility library
local utils=std.extVar("__utils");

local unfiltered_pl_args = {
unfiltered_pl : true

};

local cell_filt_type = utils.cell_filt_type({
type : "unfiltered_pl",
unfiltered_pl : unfiltered_pl_args

});

local unfiltered_pl = utils.unfiltered_pl(unfiltered_pl_args);

In the above example, the objects cell_filt_type and unfiltered_pl are identical and look like the following:

{
hidden, system fields
type :: "unfiltered_pl", # hidden field
arguments :: true, # hidden field

fields shown in the manifest
"--unfiltered-pl" : true

}

simpleaf_quant(step, map_type, cell_filt_type, arguments, output)

Input:

• step : An integer indicating the step number (execution order) of this simpleaf command record in the workflow.

• map_type : A map_type object returned by calling utils.map_type or any object with the same format.

• cell_filt_type : A cell_filt_type object returned by calling utils.cell_filt_type or any object with the same
format.

• arguments : an object in which each field represents a simpleaf quant argument. Furthermore, there must be a
field called active representing the active state of this simpleaf index command.

• output : A string representing the output directory of this simpleaf quant command.

Output:

2.7. simpleaf workflow commands 21

simpleaf, Release 0.15.0

• A well-defined simpleaf quant command record.

Example Usage

import the utility library
local utils=std.extVar("__utils");

local arguments = {
active : true,
"--chemistry" : "10xv3",
"--resolution" : "cr-like"

};

local simpleaf_quant = utils.simpleaf_quant(
2, # step number
map_type, # defined in the example usage of function `map_reads`
cell_filt_type, # defined in the example usage of function `cell_filt_type`
arguments,
"./simpleaf_quant" # output directory

);

The simpleaf_quant object in the above code chunk will be

{
hidden, system fields
map_type :: {}, # hidden field. The actual contents are omitted. see above example␣

→˓code for function `map_reads`
cell_filt_type :: {}, # hidden field. The actual contents are omitted. see above␣

→˓example code for function `cell_filt_type`
arguments :: {active : true, "--chemistry" : "10xv3", "--resolution" : "cr-like"},

→˓# hidden field
output :: "./simpleaf_quant", # hidden field

fields shown in in the manifest
program_name : "simpleaf index",
step : 1,
active : true,
"--chemistry": "10xv3",
"--index": "./workflow_output/simpleaf_index/index",
"--min-reads": 10,
"--output": "./workflow_output/simpleaf_quant",
"--reads1": "reads1.fastq",
"--reads2": "reads2.fastq",
"--resolution": "cr-like",
"--t2g-map": "./workflow_output/simpleaf_index/index/t2g_3col.tsv",
"--unfiltered-pl": true

}

22 Chapter 2. Important note

simpleaf, Release 0.15.0

feature_barcode_ref(start_step, csv, name_col, barcode_col, output)

Input:

• start_step: An integer indicating the starting step number (execution order) of the series of command records
in the workflow. This function will define three command records with incremental step numbers according to
the provided step number.

• csv: A string representing the path to the “feature_barcode.csv” file of the dataset.

• name_col: An integer representing the column index of the feature name column in the feature barcode CSV
file.

• barcode_col: An integer representing the column index of the feature barcode sequence column in the feature
barcode CSV file.

• output: A string representing the parent output directory of the result files. It will be created if it doesn’t exist.

Output:

• An object containing three external command records, including mkdir, create_t2g, and create_fasta, and a
hidden object that follows the output format of utils.ref_type shown above. This ref_type object is of the direct_ref
type. It can be used as the second argument of utils.simpleaf_index. In this ref_type object,

This function defines three external command records:

1. mkdir: This command calls the mkdir shell program to create the output directory recursively if it doesn’t exist.

2. create_t2g: This command calls awk to create a transcript-to-gene mapping TSV file according to the input csv
file, in which the transcript ID and gene ID of each feature barcode are identical. The expected output file of this
command will be named “.feature_barcode_ref_t2g.tsv” and located in the provided output directory.

3. create_fasta: This command calls awk to create a FASTA file according to the input csv file, in which each feature
barcode is a FASTA record. The expected output file of this command will be named “.feature_barcode_ref.fa”
and located in the provided output directory.

Please note that the start_step argument represents the starting step of the series of external commands. If start_step
is set to 1, then mkdir will be assigned step 1, create_t2g will be assigned step 2, and so on. Therefore, the step of any
future command after the utils.feature_barcode_ref commands should not be less than 4.

Example Usage

import the utility library
local utils=std.extVar("__utils");

local feature_barcode_ref = utils.feature_barcode_ref(
1, # start step number
"feature_barcode.csv", # feature barcode csv
1, # name_column
5, # barcode column
"feature_barcode_ref" # output path

)

The resulting object will look like the following:

{
hidden, system fields
step :: 1,
last_step :: 3,
csv :: "feature_barcode.csv",

(continues on next page)

2.7. simpleaf workflow commands 23

simpleaf, Release 0.15.0

(continued from previous page)

output :: "./feature_barcode_ref",
ref_seq :: "./feature_barcode_ref/.feature_barcode_ref.fa",
t2g_map :: "./feature_barcode_ref/.feature_barcode_ref_t2g.tsv",

external command records
mkdir : {

active : true,
step: step,
program_name: "mkdir",
arguments: ["-p", "./feature_barcode_ref"]

},
create_t2g : {

active : true,
step: step + 1,
program_name: "awk",
arguments: ["-F","','","'NR>1 {sub(/ /,\"_\",$1);print $1\"\\t\"$1}'", csv, ">",

→˓"./feature_barcode_ref/.feature_barcode_ref_t2g.tsv"]
},

create_fasta : {
active : true,
step: step + 2,
program_name: "awk",
arguments: ["-F","','","'NR>1 {sub(/ /,\"_\",$1);print \">\"$1\"\\n\"$5}'", csv,

→˓">", "./feature_barcode_ref/.feature_barcode_ref.fa"]
},
ref_type :: {

type : "direct_ref",
t2g_map :: "./feature_barcode_ref/.feature_barcode_ref_t2g.tsv",
"--ref-seq" : "./feature_barcode_ref/.feature_barcode_ref.fa"

}
}

barcode_translation(start_step, url, quant_cb, output)

Input:

• start_step: An integer indicating the starting step number (execution order) of the series of command records
in the workflow. This function will define five command records with incremental step numbers according to the
provided step number.

• url: A string representing the downloadable URL to the barcode mapping file. You can use this URL for 10xv3
data.

• quant_cb: A string representing the path to the cell barcode file. Usually, this is at
af_quant/alevin/quants_mat_rows.txt in the simpleaf quant command output directory.

• output: A string representing the parent output directory of the result files. It will be created if it doesn’t exist.

Output:

• An object containing five external command records, including mkdir, fetch_cb_translation_file, un-
zip_cb_translation_file, backup_bc_file, and barcode_translation.

This function defines five external command records:

24 Chapter 2. Important note

https://github.com/10XGenomics/cellranger/raw/master/lib/python/cellranger/barcodes/translation/3M-february-2018.txt.gz

simpleaf, Release 0.15.0

1. mkdir: This command calls the mkdir shell program to create the output directory recursively if it doesn’t exist.

2. fetch_cb_translation_file: This command calls wget to fetch the barcode mapping file. The expected output file
of this command will be called “.barcode.txt.gz”, located in the provided output directory.

3. unzip_cb_translation_file: This command calls gunzip to decompress the barcode mapping file. The expected
output file of this command will be called “.barcode.txt”, located in the provided output directory.

4. backup_bc_file: This command calls mv to rename the provided barcode file. The expected output file of this
command will have the same path as the provided barcode file but with a .bkp suffix.

5. barcode_translation: This command calls awk to convert the barcodes in the provided barcode file according to
the barcode translation file. The expected output file will be put at the provided quant_cb path.

Notice that the start_step argument represents the starting step of the series of external commands. If start_step is set
to 1, then mkdir will be assigned as step 1, fetch_cb_translation_file will be assigned step 2, and so on. Therefore, the
step of any future command after the barcode_translation commands should not be less than 6.

Example Usage

import the utility library
local utils=std.extVar("__utils");
local url = "https://github.com/10XGenomics/cellranger/raw/master/lib/python/cellranger/
→˓barcodes/translation/3M-february-2018.txt.gz";
local quant_cb = "simpeaf_quant/af_quant/alevin/quants_mat_rows.txt";

local barcode_translation = utils.barcode_translation(
1, # start step number
url,
quant_cb,
"simpeaf_quant/af_quant/alevin" # output path

)

The resulting object will look like the following:

{
step :: 1,
last_step :: 5,
url :: "https://github.com/10XGenomics/cellranger/raw/master/lib/python/cellranger/

→˓barcodes/translation/3M-february-2018.txt.gz",
quant_cb :: "simpeaf_quant/af_quant/alevin/quants_mat_rows.txt",
output :: "simpeaf_quant/af_quant/alevin",
mkdir : {

active : true,
step : step,
program_name : "mkdir",
arguments : ["-p", "simpeaf_quant/af_quant/alevin"]

},

fetch_cb_translation_file : {
active : true,
step : step + 1,
program_name : "wget",
arguments : ["-O", "simpeaf_quant/af_quant/alevin/.barcode.txt.gz", "https://

→˓github.com/10XGenomics/cellranger/raw/master/lib/python/cellranger/barcodes/
→˓translation/3M-february-2018.txt.gz"]

},
(continues on next page)

2.7. simpleaf workflow commands 25

simpleaf, Release 0.15.0

(continued from previous page)

unzip_cb_translation_file : {
active : true,
step : step + 2,
"program_name" : "gunzip",
"arguments": ["-c", "simpeaf_quant/af_quant/alevin/.barcode.txt.gz", ">",

→˓"simpeaf_quant/af_quant/alevin/.barcode.txt"]
},

backup_bc_file : {
active : true,
step: step + 3,
program_name: "mv",
arguments: ["simpeaf_quant/af_quant/alevin/quants_mat_rows.txt", "simpeaf_quant/

→˓af_quant/alevin/quants_mat_rows.txt.bkp"]
},

// Translate RNA barcode to feature barcode
barcode_translation : {

active : true,
step: step + 4,
program_name: "awk",
arguments: ["'FNR==NR {dict[$1]=$2; next} {$1=($1 in dict) ? dict[$1] : $1}1'",

→˓"simpeaf_quant/af_quant/alevin/.barcode.txt", "simpeaf_quant/af_quant/alevin/quants_
→˓mat_rows.txt.bkp", ">", "simpeaf_quant/af_quant/alevin/quants_mat_rows.txt"]

},
}

utils.get(o, f, use_default = false, default = null)

Input:

• o: an object,

• f: the target field name,

• use_default: boolean,

• default: a default value returned if the target field doesn’t exist.

Output:

• Return the target field f in the given object if the object has a sub-field called f. Otherwise,

• if use_default is true, return the value of the default argument.

• if use_default is false, raise an error.

This function tries to (non-recursively) get a sub-field in the provided object and return it. If the field doesn’t exist, then
it either returns a default value or raises an error.

Example Usage

local utils = std.extVar("__utils");

local splici_args = {
(continues on next page)

26 Chapter 2. Important note

simpleaf, Release 0.15.0

(continued from previous page)

gtf : "genes.gtf",
fasta : "genome.fa",
rlen : 91

};

{
default_behavior : utils.get(splici_args, "gtf"), # this will return "genes.gtf",

not_exist : utils.get(splici_args, "I do not exist"), # raise error

provide_default : utils.get(splici_args, "I do not exist", true, "but I have a␣
→˓default value") # this yields "but I have a default value"

}

2.8 License

BSD 3-Clause License

Copyright (c) 2020, Mohsen Zakeri, Avi Srivastava, Hirak Sarkar, Dongze He, Rob Patro All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the fol-
lowing conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

2.8. License 27

simpleaf, Release 0.15.0

28 Chapter 2. Important note

CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

29

	What is simpleaf?
	Important note
	Installation
	Recommended: installing from conda
	Installing with cargo
	Building from source (from GitHub)

	set-paths command
	add-chemistry command
	inspect command
	index command
	quant command
	A note on the --chemistry flag

	simpleaf workflow commands
	simpleaf workflow get
	Providing information in workflow configuration file
	Full Usage

	simpleaf workflow run
	Workflow Output
	workflow run: Full Usage
	The procedure of parsing a simpleaf workflow template
	Valid simpleaf workflow manifest format

	simpleaf workflow list
	Full Usage

	simpleaf workflow patch
	Patch file
	workflow patch: Full Usage

	simpleaf workflow refresh
	Full Usage

	Simpleaf workflow utility library
	Import the utility library
	utils.ref_type(o)
	utils.simpleaf_index(step, ref_type, arguments, output)
	utils.map_type(o, simpleaf_index = {})
	utils.cell_filt_type(o)
	simpleaf_quant(step, map_type, cell_filt_type, arguments, output)
	feature_barcode_ref(start_step, csv, name_col, barcode_col, output)
	barcode_translation(start_step, url, quant_cb, output)
	utils.get(o, f, use_default = false, default = null)

	License

	Indices and tables

